Ideal topology on a distrbutive lattice

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Graph C∗-Algebras with a Linear Ideal Lattice

At the cost of restricting the nature of the involved K-groups, we prove a classification result for a hitherto unexplored class of graph C∗-algebras, allowing us to classify all graph C∗-algebras on finitely many vertices with a finite linear ideal lattice if all pair of vertices are connected by infinitely many edges when they are connected at all. 2000 Mathematics Subject Classification: Pri...

متن کامل

The Vertex Ideal of a Lattice

We introduce a monomial ideal whose standard monomials encode the vertices of all fibers of a lattice. We study the minimal generators, the radical, the associated primes and the primary decomposition of this ideal, as well as its relation to initial ideals of lattice ideals.

متن کامل

Ideal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]

Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...

متن کامل

THE INTERNAL IDEAL LATTICE IN THE TOPOS OF M-SETS

We believe that the study of the notions of universal algebra modelled in an arbitarry topos rather than in the category of sets provides a deeper understanding of the real features of the algebraic notions. [2], [3], [4], [S], [6], [7], [13], [14] are some examples of this approach. The lattice Id(L) of ideals of a lattice L (in the category of sets) is an important ingredient of the categ...

متن کامل

Order Topology and Frink Ideal Topology of Effect Algebras

In this paper we prove the following conclusions: (1). If E is a complete atomic lattice effect algebra, then E is (o)-continuous ⇔ E is order-topological ⇔ E is a totally order-disconnected ⇔ E is algebraic. (2). If E is a complete atomic distributive lattice effect algebra, then its Frink ideal topology τid is Hausdorff topology and is finer than its order topology τo, and τid = τo ⇔ 1 is fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 1974

ISSN: 0004-9735

DOI: 10.1017/s1446788700029244